3.283 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {1-\cos (c+d x)}} \, dx\)

Optimal. Leaf size=118 \[ \frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {1-\cos (c+d x)}}+\frac {\tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d} \]

[Out]

arctanh(sin(d*x+c)/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2))/d-arctanh(1/2*sin(d*x+c)*2^(1/2)/(1-cos(d*x+c))^(1/2
)/cos(d*x+c)^(1/2))*2^(1/2)/d+sin(d*x+c)*cos(d*x+c)^(1/2)/d/(1-cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2778, 2982, 2782, 206, 2775, 207} \[ \frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {1-\cos (c+d x)}}+\frac {\tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)/Sqrt[1 - Cos[c + d*x]],x]

[Out]

ArcTanh[Sin[c + d*x]/(Sqrt[1 - Cos[c + d*x]]*Sqrt[Cos[c + d*x]])]/d - (Sqrt[2]*ArcTanh[Sin[c + d*x]/(Sqrt[2]*S
qrt[1 - Cos[c + d*x]]*Sqrt[Cos[c + d*x]])])/d + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[1 - Cos[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2775

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*b)/f, Subst[Int[1/(b + d*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2778

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-2*d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(f*(2*n - 1)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/(b*(2*n
- 1)), Int[((c + d*Sin[e + f*x])^(n - 2)*Simp[a*c*d - b*(2*d^2*(n - 1) + c^2*(2*n - 1)) + d*(a*d - b*c*(4*n -
3))*Sin[e + f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {1-\cos (c+d x)}} \, dx &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {1-\cos (c+d x)}}+\frac {1}{2} \int \frac {1+\cos (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}} \, dx\\ &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {1-\cos (c+d x)}}-\frac {1}{2} \int \frac {\sqrt {1-\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx+\int \frac {1}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}} \, dx\\ &=\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {1-\cos (c+d x)}}-\frac {\operatorname {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{2-x^2} \, dx,x,\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}\\ &=\frac {\tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {1-\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.21, size = 227, normalized size = 1.92 \[ -\frac {i e^{-i (c+d x)} \left (-1+e^{i (c+d x)}\right ) \sqrt {\cos (c+d x)} \left (\sqrt {2} e^{i (c+d x)} \sinh ^{-1}\left (e^{i (c+d x)}\right )-4 e^{i (c+d x)} \tanh ^{-1}\left (\frac {1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )+\sqrt {2} \left (\sqrt {1+e^{2 i (c+d x)}} \left (1+e^{i (c+d x)}\right )+e^{i (c+d x)} \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right )\right )}{2 \sqrt {2} d \sqrt {1+e^{2 i (c+d x)}} \sqrt {1-\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)/Sqrt[1 - Cos[c + d*x]],x]

[Out]

((-1/2*I)*(-1 + E^(I*(c + d*x)))*(Sqrt[2]*E^(I*(c + d*x))*ArcSinh[E^(I*(c + d*x))] - 4*E^(I*(c + d*x))*ArcTanh
[(1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] + Sqrt[2]*((1 + E^(I*(c + d*x)))*Sqrt[1 + E^((
2*I)*(c + d*x))] + E^(I*(c + d*x))*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]))*Sqrt[Cos[c + d*x]])/(Sqrt[2]*d*E^(
I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Sqrt[1 - Cos[c + d*x]])

________________________________________________________________________________________

fricas [B]  time = 1.29, size = 225, normalized size = 1.91 \[ \frac {\sqrt {2} \log \left (-\frac {2 \, {\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} - {\left (3 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{{\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 2 \, {\left (\cos \left (d x + c\right ) + 1\right )} \sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} + \log \left (\frac {2 \, {\left (\sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} + \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - \log \left (\frac {2 \, {\left (\sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} - \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )}\right ) \sin \left (d x + c\right )}{2 \, d \sin \left (d x + c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(1-cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*log(-(2*(sqrt(2)*cos(d*x + c) + sqrt(2))*sqrt(-cos(d*x + c) + 1)*sqrt(cos(d*x + c)) - (3*cos(d*x
+ c) + 1)*sin(d*x + c))/((cos(d*x + c) - 1)*sin(d*x + c)))*sin(d*x + c) + 2*(cos(d*x + c) + 1)*sqrt(-cos(d*x +
 c) + 1)*sqrt(cos(d*x + c)) + log(2*(sqrt(-cos(d*x + c) + 1)*sqrt(cos(d*x + c)) + sin(d*x + c))/sin(d*x + c))*
sin(d*x + c) - log(2*(sqrt(-cos(d*x + c) + 1)*sqrt(cos(d*x + c)) - sin(d*x + c))/sin(d*x + c))*sin(d*x + c))/(
d*sin(d*x + c))

________________________________________________________________________________________

giac [A]  time = 1.75, size = 141, normalized size = 1.19 \[ -\frac {\sqrt {2} {\left (\sqrt {2} \log \left (\frac {\sqrt {2} - \sqrt {-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1}}{\sqrt {2} + \sqrt {-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1}}\right ) - \frac {4 \, \sqrt {-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + 2 \, \log \left (\sqrt {-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + 1\right ) - 2 \, \log \left (-\sqrt {-\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1} + 1\right )\right )}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(1-cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(sqrt(2)*log((sqrt(2) - sqrt(-tan(1/2*d*x + 1/2*c)^2 + 1))/(sqrt(2) + sqrt(-tan(1/2*d*x + 1/2*c)^
2 + 1))) - 4*sqrt(-tan(1/2*d*x + 1/2*c)^2 + 1)/(tan(1/2*d*x + 1/2*c)^2 + 1) + 2*log(sqrt(-tan(1/2*d*x + 1/2*c)
^2 + 1) + 1) - 2*log(-sqrt(-tan(1/2*d*x + 1/2*c)^2 + 1) + 1))/d

________________________________________________________________________________________

maple [A]  time = 0.13, size = 166, normalized size = 1.41 \[ -\frac {\left (\cos ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \left (\sqrt {2}\, \arctanh \left (\frac {\sqrt {2}}{2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-\arctanh \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {2}}{d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {2-2 \cos \left (d x +c \right )}\, \sin \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)/(1-cos(d*x+c))^(1/2),x)

[Out]

-1/d*cos(d*x+c)^(3/2)*(-1+cos(d*x+c))^2*(2^(1/2)*arctanh(1/2*2^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-arctanh((cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2))/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/(2-2*cos(d*x+c))^(1/2)/sin(d*x+c)^3*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {-\cos \left (d x + c\right ) + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(1-cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/sqrt(-cos(d*x + c) + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{\sqrt {1-\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)/(1 - cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(3/2)/(1 - cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {1 - \cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)/(1-cos(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**(3/2)/sqrt(1 - cos(c + d*x)), x)

________________________________________________________________________________________